Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 1392, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123096

RESUMO

ATR kinase activity slows replication forks and prevents origin firing in damaged cells. Here we describe proteomic analyses that identified mechanisms through which ATR kinase inhibitors induce unscheduled origin firing in undamaged cells. ATR-Chk1 inhibitor-induced origin firing is mediated by Cdc7 kinase through previously undescribed phosphorylations on GINS that induce an association between GINS and And-1. ATR-Chk1 inhibitor-induced origin firing is blocked by prior exposure to DNA damaging agents showing that the prevention of origin firing does not require ongoing ATR activity. In contrast, ATR-Chk1 inhibitor-induced origins generate additional replication forks that are targeted by subsequent exposure to DNA damaging agents. Thus, the sequence of administration of an ATR kinase inhibitor and a DNA damaging agent impacts the DNA damage induced by the combination. Our experiments identify competing ATR and Cdc7 kinase-dependent mechanisms at replication origins in human cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Dano ao DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Componente 4 do Complexo de Manutenção de Minicromossomo/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Origem de Replicação/genética
2.
Sci Rep ; 7: 41892, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145510

RESUMO

We show that ATM kinase inhibition using AZ31 prior to 9 or 9.25 Gy total body irradiation (TBI) reduced median time to moribund in mice to 8 days. ATR kinase inhibition using AZD6738 prior to TBI did not reduce median time to moribund. The striking finding associated with ATM inhibition prior to TBI was increased crypt loss within the intestine epithelium. ATM inhibition reduced upregulation of p21, an inhibitor of cyclin-dependent kinases, and blocked G1 arrest after TBI thereby increasing the number of S phase cells in crypts in wild-type but not Cdkn1a(p21CIP/WAF1)-/- mice. In contrast, ATR inhibition increased upregulation of p21 after TBI. Thus, ATM activity is essential for p21-dependent arrest while ATR inhibition may potentiate arrest in crypt cells after TBI. Nevertheless, ATM inhibition reduced median time to moribund in Cdkn1a(p21CIP/WAF1)-/- mice after TBI. ATM inhibition also increased cell death in crypts at 4 h in Cdkn1a(p21CIP/WAF1)-/-, earlier than at 24 h in wild-type mice after TBI. In contrast, ATR inhibition decreased cell death in crypts in Cdkn1a(p21CIP/WAF1)-/- mice at 4 h after TBI. We conclude that ATM activity is essential for p21-dependent and p21-independent mechanisms that radioprotect intestinal crypts and that ATM inhibition promotes GI syndrome after TBI.


Assuntos
Síndrome Aguda da Radiação/tratamento farmacológico , Fase G1/efeitos dos fármacos , Gastroenteropatias/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Raios gama/efeitos adversos , Indóis , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Quinolinas/farmacocinética , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Protetores contra Radiação/farmacocinética , Protetores contra Radiação/uso terapêutico , Sulfonamidas , Sulfóxidos/farmacocinética , Sulfóxidos/farmacologia , Sulfóxidos/uso terapêutico
3.
Nat Commun ; 5: 5513, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25423885

RESUMO

Cellular DNA repair processes are crucial to maintain genome stability and integrity. In DNA base excision repair, a tight heterodimer complex formed by DNA polymerase ß (Polß) and XRCC1 is thought to facilitate repair by recruiting Polß to DNA damage sites. Here we show that disruption of the complex does not impact DNA damage response or DNA repair. Instead, the heterodimer formation is required to prevent ubiquitylation and degradation of Polß. In contrast, the stability of the XRCC1 monomer is protected from CHIP-mediated ubiquitylation by interaction with the binding partner HSP90. In response to cellular proliferation and DNA damage, proteasome and HSP90-mediated regulation of Polß and XRCC1 alters the DNA repair complex architecture. We propose that protein stability, mediated by DNA repair protein complex formation, functions as a regulatory mechanism for DNA repair pathway choice in the context of cell cycle progression and genome surveillance.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Linhagem Celular , Dano ao DNA , DNA Polimerase beta/genética , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Modelos Moleculares , Ligação Proteica , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
4.
Mutat Res ; 686(1-2): 57-67, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20096707

RESUMO

Alkylating agents induce cell death in wild-type (WT) mouse embryonic fibroblasts (MEFs) by multiple mechanisms, including apoptosis, autophagy and necrosis. DNA polymerase beta (Pol beta) knockout (KO) MEFs are hypersensitive to the cytotoxic effect of alkylating agents, as compared to WT MEFs. To test the hypothesis that Parp1 is preferentially activated by methyl methanesulfonate (MMS) exposure of Pol beta KO MEFs, we have examined the relationship between Pol beta expression, Parp1 activation and cell survival following MMS exposure in a series of WT and Pol beta deficient MEF cell lines. Consistent with our hypothesis, we observed elevated Parp1 activation in Pol beta KO MEFs as compared to matched WT MEFs. Both the MMS-induced activation of Parp1 and the MMS-induced cytotoxicity of Pol beta KO MEFs are attenuated by pre-treatment with the Parp1/Parp2 inhibitor PJ34. Further, elevated Parp1 activation is observed following knockdown (KD) of endogenous Pol beta, as compared to WT cells. Pol beta KD MEFs are hypersensitive to MMS and both the MMS-induced hypersensitivity and Parp1 activation is prevented by pre-treatment with PJ34. In addition, the MMS-induced cellular sensitivity of Pol beta KO MEFs is reversed when Parp1 is also deleted (Pol beta/Parp1 double KO MEFs) and we observe no MMS sensitivity differential between Pol beta/Parp1 double KO MEFs and those that express recombinant mouse Pol beta. These studies suggest that Parp1 may function as a sensor of BER to initiate cell death when BER is aborted or fails. Parp1 may therefore function in BER as a tumor suppressor by initiating cell death and preventing the accumulation of cells with chromosomal damage due to a BER defect.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , Fibroblastos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Alquilação , Animais , Morte Celular , Linhagem Celular , Dano ao DNA , Embrião de Mamíferos , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1 , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...